4,077 research outputs found

    Rendezvous of Two Robots with Constant Memory

    Full text link
    We study the impact that persistent memory has on the classical rendezvous problem of two mobile computational entities, called robots, in the plane. It is well known that, without additional assumptions, rendezvous is impossible if the entities are oblivious (i.e., have no persistent memory) even if the system is semi-synchronous (SSynch). It has been recently shown that rendezvous is possible even if the system is asynchronous (ASynch) if each robot is endowed with O(1) bits of persistent memory, can transmit O(1) bits in each cycle, and can remember (i.e., can persistently store) the last received transmission. This setting is overly powerful. In this paper we weaken that setting in two different ways: (1) by maintaining the O(1) bits of persistent memory but removing the communication capabilities; and (2) by maintaining the O(1) transmission capability and the ability to remember the last received transmission, but removing the ability of an agent to remember its previous activities. We call the former setting finite-state (FState) and the latter finite-communication (FComm). Note that, even though its use is very different, in both settings, the amount of persistent memory of a robot is constant. We investigate the rendezvous problem in these two weaker settings. We model both settings as a system of robots endowed with visible lights: in FState, a robot can only see its own light, while in FComm a robot can only see the other robot's light. We prove, among other things, that finite-state robots can rendezvous in SSynch, and that finite-communication robots are able to rendezvous even in ASynch. All proofs are constructive: in each setting, we present a protocol that allows the two robots to rendezvous in finite time.Comment: 18 pages, 3 figure

    Evolution of Rotating Accreting White Dwarfs and the Diversity of Type Ia Supernovae

    Full text link
    Type Ia supernovae (SNe Ia) have relatively uniform light curves and spectral evolution, which make SNe Ia useful standard candles to determine cosmological parameters. However, the peak brightness is not completely uniform, and the origin of the diversity has not been clear. We examine whether the rotation of progenitor white dwarfs (WDs) can be the important source of the diversity of the brightness of SNe Ia. We calculate the structure of rotating WDs with an axisymmetric hydrostatic code. The diversity of the mass induced by the rotation is ~0.08 Msun and is not enough to explain the diversity of luminosity. However, we found the following relation between the initial mass of the WDs and their final state; i.e., a WD of smaller initial mass will rotate more rapidly before the supernova explosion than that of larger initial mass. This result might explain the dependence of SNe Ia on their host galaxies.Comment: 7 pages, 6 figure

    Nano-composite single grain YBa2Cu3O 7-δ/Y2Ba4CuBiOy bulk superconductors

    Get PDF
    We have succeeded recently in synthesizing a chemically stable, inert family of materials of composition Y2Ba4CuMOy (Y-2411 where M Nb, Ta, Mo, W, Zr, Hf) within the superconducting YBa 2Cu3O7-δ (Y-123) phase matrix that forms effective flux pinning centers of nano-scale dimensions. In this paper we report the synthesis of the Y2Ba4CuBiOy phase with nano-scale dimensions that is similarly compatible with the Y-123 matrix and which does not impair the properties of the bulk superconductor. YBa 2Cu3O7-δ/Y2BaCuO5 (Y-123/Y-211) precursor powders enriched with various amounts of Bi 2O3 and Y2Ba4CuBiOy have been fabricated successfully in the form of large, single grains by the top seeded melt growth (TSMG) process. Microstructural studies of these composites reveal the presence of nanometer-sized Y2Ba4CuBiO y and much larger Y-211 phase particles (∼1 νm) embedded in the Y-123 phase matrix. The critical current density of the nano-composites is observed to increase significantly compared to undoped YBCO. © 2006 IOP Publishing Ltd

    Frustration-induced eta inversion in the S=1/2 bond-alternating spin chain

    Full text link
    We study the frustration-induced enhancement of the incommensurate correlation for a bond-alternating quantum spin chain in a magnetic field, which is associated with a quasi-one-dimensional organic compound F5PNN. We investigate the temperature dependence of the staggered susceptibilities by using the density matrix renormalization group, and then find that the incommensurate correlation becomes dominant in a certain range of the magnetic field. We also discuss the mechanism of this enhancement on the basis of the mapping to the effective S=1/2 XXZ chain and a possibility of the field-induced incommensurate long range order.Comment: 4 pages, 5 figures, replaced with revised version accepted to PR

    Structural Insights into Differences in Drug-binding Selectivity between Two Forms of Human α1-Acid Glycoprotein Genetic Variants, the A and F1*S Forms

    Get PDF
    Human α1-acid glycoprotein (hAGP) in serum functions as a carrier of basic drugs. In most individuals, hAGP exists as a mixture of two genetic variants, the F1*S and A variants, which bind drugs with different selectivities. We prepared a mutant of the A variant, C149R, and showed that its drug-binding properties were indistinguishable from those of the wild type. In this study, we determined the crystal structures of this mutant hAGP alone and complexed with disopyramide (DSP), amitriptyline (AMT), and the nonspecific drug chlorpromazine (CPZ). The crystal structures revealed that the drug-binding pocket on the A variant is located within an eight-stranded β-barrel, similar to that found in the F1*S variant and other lipocalin family proteins. However, the binding region of the A variant is narrower than that of the F1*S variant. In the crystal structures of complexes with DSP and AMT, the two aromatic rings of each drug interact with Phe-49 and Phe-112 at the bottom of the binding pocket. Although the structure of CPZ is similar to those of DSP and AMT, its fused aromatic ring system, which is extended in length by the addition of a chlorine atom, appears to dictate an alternative mode of binding, which explains its nonselective binding to the F1*S and A variant hAGPs. Modeling experiments based on the co-crystal structures suggest that, in complexes of DSP, AMT, or CPZ with the F1*S variant, Phe-114 sterically hinders interactions with DSP and AMT, but not CPZ. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc

    Magnetic form factor of SrFe2_2As2_2

    Full text link
    Neutron diffraction measurements have been carried out to investigate the magnetic form factor of the parent SrFe2As2 system of the iron-based superconductors. The general feature is that the form factor is approximately isotropic in wave vector, indicating that multiple d-orbitals of the iron atoms are occupied as expected based on band theory. Inversion of the diffraction data suggests that there is some elongation of the spin density toward the As atoms. We have also extended the diffraction measurements to investigate a possible jump in the c-axis lattice parameter at the structural phase transition, but find no detectable change within the experimental uncertainties

    Ghosts in the self-accelerating universe

    Get PDF
    The self-accelerating universe realizes the accelerated expansion of the universe at late times by large-distance modification of general relativity without a cosmological constant. The Dvali-Gabadadze-Porrati (DGP) braneworld model provides an explicit example of the self-accelerating universe. Recently, the DGP model becomes very popular to study the observational consequences of the modified gravity models as an alternative to dark energy models in GR. However, it has been shown that the self-accelerating universe in the DGP model contains a ghost at the linearized level. The ghost carries negative energy densities and it leads to the instability of the spacetime. In this article, we review the origin of the ghost in the self-accelerating universe and explore the physical implication of the existence of the ghost.Comment: Invited topical review for Classical and Quantum Gravity, 20 pages, 4 figure

    Structural Features of Layered Iron Pnictide Oxides (Fe2As2)(Sr4M2O6)

    Full text link
    Structural features of newly found perovskite-based iron pnictide oxide system have been systematically studied. Compared to REFePnO system, perovskite-based system tend to have lower Pn-Fe-Pn angle and higher pnictogen height owing to low electronegativity of alkaline earth metal and small repulsive force between pnictogen and oxygen atoms. As-Fe-As angles of (Fe2As2)(Sr4Cr2O6), (Fe2As2)(Sr4V2O6) and (Fe2Pn2)(Sr4MgTiO6) are close to ideal tetrahedron and those pnictogen heights of about 1.40 A are close to NdFeAsO with optimized carrier concentration. These structural features of this system may leads to realization of high Tc superconductivity.Comment: 3pages, 2figures, 1table, proceedings of M2S 200

    Mathematical analysis of a model of river channel formation.

    Get PDF
    The study of overland flow of water over an erodible sediment leads to a coupled model describing the evolution of the topographic elevation and the depth of the overland water film. The spatially uniform solution of this model is unstable, and this instability corresponds to the formation of rills, which in reality then grow and coalesce to form large-scale river channels. In this paper we consider the deduction and mathematical analysis of a deterministic model describing river channel formation and the evolution of its depth. The model involves a degenerate nonlinear parabolic equation (satisfied on the interior of the support of the solution) with a super-linear source term and a prescribed constant mass. We propose here a global formulation of the problem (formulated in the whole space, beyond the support of the solution) which allows us to show the existence of a solution and leads to a suitable numerical scheme for its approximation. A particular novelty of the model is that the evolving channel self-determines its own width, without the need to pose any extra conditions at the channel margin

    Experimental investigation of hyporheic interactions

    Get PDF
    Research on hyporheic interactions is not new to the present world, but most of the previous research is in the environmental and ecological points of view. This study was to understand the hyporheic interactions by means of engineering perspectives. Several experiments were carried out at laboratory scale to identify the relationships between important non-dimensional river parameters and non-dimensional interaction parameters. Results can be concluded to show some clear relationships among the non-dimensional parameters
    • …
    corecore